Global Impact Balancing in the Hierarchic Genetic Search
نویسندگان
چکیده
The new Globally Balanced Hierarchic Genetic Strategy (GB-HGS) was introduced as a tool for solving difficult global optimization problems. This strategy provides a multi-deme economic stochastic search with an adaptive accuracy that allows many local extremes of the objective to be found. The strategy was designed according to the Multi Agent System (MAS) paradigm. The novelty of GB-HGS derives from its control of the search impact performed by various demes on the basis of the global information gathered and exchanged among the computing agents. This mechanism is applied together with the local profiling of the computational process already used in the previous versions of hierarchic genetic computations. The new strategy exhibits better efficiency, especially in the second phase of computations, when the promising regions containing the global extremes are encountered (see Figures 3, 4).
منابع مشابه
A Hybrid Unconscious Search Algorithm for Mixed-model Assembly Line Balancing Problem with SDST, Parallel Workstation and Learning Effect
Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid met...
متن کاملOPTIMIZATION OF SKELETAL STRUCTURES USING IMPROVED GENETIC ALGORITHM BASED ON PROPOSED SAMPLING SEARCH SPACE IDEA
In this article, by Partitioning of designing space, optimization speed is tried to be increased by GA. To this end, designing space search is done in two steps which are global search and local search. To achieve this goal, according to meshing in FEM, firstly, the list of sections is divided to specific subsets. Then, intermediate member of each subset, as representative of subset, is defined...
متن کاملA Hybrid Algorithm using Firefly, Genetic, and Local Search Algorithms
In this paper, a hybrid multi-objective algorithm consisting of features of genetic and firefly algorithms is presented. The algorithm starts with a set of fireflies (particles) that are randomly distributed in the solution space; these particles converge to the optimal solution of the problem during the evolutionary stages. Then, a local search plan is presented and implemented for searching s...
متن کاملConstrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملHybrid algorithm for inverse DC/AC resistivity logging measurement simulations
We present a hybrid algorithm for solving inverse 3D resistivity logging measurement simulation problem with DC and AC tools in deviated wells. The term “simulation of measurements” is widely used by the geophysical community. A quantity of interest, voltage, is measured at a receiver electrode located in the logging instrument. Computer simulations are used to explain obtained measurements. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computing and Informatics
دوره 28 شماره
صفحات -
تاریخ انتشار 2009